Powered By Blogger
Mostrando postagens com marcador Infra Vermelho. Mostrar todas as postagens
Mostrando postagens com marcador Infra Vermelho. Mostrar todas as postagens

domingo, 17 de março de 2013

LINUSBot - Line Follower Robot - Controle PID






LINUSBot - Controle PID


Este é um complemento do primeiro posto do LINUSBot.

Agora o controle dos movimentos do seguidor de linha é com PID; controle Proporcional, Integral, Derivativo. Isso torna os movimentos durantes as curvas muito mais suave e durante as retas, ele pode desenvolver maior velocidade, chegando à velocidade máxima.
O controle PID proporciona ao Robot uma "aprendizagem", fazendo com que o robot possa desenvolver melhor nas curvas e retas do circuito.

Agora vamos a uma breve introdução e resumo sobre o controle PID.
Basicamente, este tipo de controlador efetua as seguintes ações:


Sistema PID básico


1 - Controle Proporcional:
Multiplica o "erro" corrente por uma constante Kp.
O "erro", é a diferença entre a saída real e a saída desejada e é realimentado no sistema, ou seja: 
A saída real é subtraída da saída desejada (set point), assim, é calculado o erro.  Esse erro é inserido no controlador PID como entrada, e o controlador PID (calculando os termos P I D), comanda o sistema para tentar eliminar esse erro.
Garantindo assim o ganho necessário para chegar próximo do sinal de saída desejado o mais rápido possível e com a melhor estabilidade do sistema.

2 - Controle Integral:
O termo Integral, multiplica o erro corrente e sua duração por uma constante Ki, fazendo uma somátorio de toda essa informação.
O termo Integral quando somado ao termo Proporcional; acelera o processo de chegar ao estado estacionário do seu sistema, além de proporcionar um sinal mais próximo da saída desejada. Em outras palavras, ele também elimina (ou pelo menos tenta eliminar) a parcela residual de erro e chega mais rápido ao resultado desejado.


3 - Controle Derivativo:
O termo Derivativo, faz com que a razão de mudança do sinal de erro seja multiplicada por uma constante Kd. A intensão é predizer o erro e assim diminuir a taxa com que os erros produzem mudanças no sistema.



Podemos usar os 3 termos juntos para formar um controlador PID, ou suas variaçãoes, tais como:


Controlador P (algumas vezes utilizado):
Neste caso o uso de pequenos vlores da constante Kp é a melhor maneira de conseguir chegar ao valor desejado, mas o seu controle será lento (ele demora pra chegar ao valor desejado).  Se você aumentar o valor de Kp, sobre-impulsos podem ocorrer e o seu sistema ficará estável.



Controlador PI (mais usado):

Ele remove a parcela residual de erro no caso estacionário (melhorando a resposta a transientes), mas neste caso você poderá ter sobre-impulso e também inversão de estado, ocorrendo oscilação do sistema e causando instabilidade, podendo o sistema ser sobre-amortecido,  ou sub-amortecido, ou oscilatório.
Este tipo de controle deixa o sistema mais lento. Usando valores maiores de Ki, é possível deixar o sistema mais rápido, porem aumenta o sobre-impulso diminuíndo a margem de estabilidade do seu sistema.


Controlador PD (raramente utilizado):
Usado para diminuir a magnetude do sobre-impulso dos sistemas que usam Controlador Integral e melhorar a estabilidade do sistema. Porém o controle Derivativo, amplifica a magnetude de ruído do termo de erro do sistema e pode deixar o processo instável. O controlador PD diminui o tempo para chegar ao valor desejado, consideravelmente.... para isso o ganho derivativo Kd deve ser alto. Isso diminui o tempo de controle, porém aumenta a largura de banda do sistema, deixando o sistema susceptível a ruídos.


Controlador PID (algumas vezes utilizado):
Usando PID (combinação de PI+PD), removemos a razão de erro do sistema e diminuímos  o tempo da resposta com uma resposta transistória razoável (sem oscilações ou instabilidades).


Este estudo pode ser encontrado no link: http://www.youtube.com/watch?v=wbmEUi2p-nA




Esta é  o modo básico de implementação de um PID via software:


previous_error = 0
integral = 0 
start:
  error = setpoint - measured_value
  integral = integral + error*dt
  derivative = (error - previous_error)/dt
  output = Kp*error + Ki*integral + Kd*derivative
  previous_error = error
  wait(dt)
  goto start


Veja Mais em: http://en.wikipedia.org/wiki/PID_controller

No projeto do LINUSBot, foi usado os seguintes parãmetros:
Kp = 1/20 
Ki  = 1/10000
Kd = 3/2

O código completo pode ser baixado do link:



http://www.4shared.com/file/iPVAVCwy/LINUSBot_9_3pi_modelo_PID.html


Obtenha todos os arquivos necessários no GitHub:
https://github.com/Arduinobymyself/LINUSBot.git


Veja o vídeo do LINUSBot em ação e confira os resultados.

http://www.youtube.com/watch?v=FKq6WeBBH14




Dúvidas e sugestões para: arduinobymyself@gmail.com





domingo, 27 de janeiro de 2013

LINUSBot - Robot Seguidor de linhas





Esta barra, indica o nível de dificuldade encontrado para cada experiência realizada.
sendo:
"VERDE", indicação de nível 1 a 5 (Fácil);
"AMARELO", indicação de nível 6 a 8 (Médio);
VERMELHO, indicação de nível 9 e 10 (Difícil);


LINUSBot - Line Follower - Seguidor de Linhas


O funcionamento deste Robot é bastante simples.

Sensores Infra-vermelho colocados à frente do chassis (neste projeto usaremos o um chassi apropriado do tipo redondo) irão monitorar quando o nosso Robot está sobre uma linha negra ou quando está sobre um fundo  branco.
No caso de o Robot estar sobre a linha negra, ele irá sempre à frente; e no caso de sair da linha e cair em uma área branca, ele irá determinar se deverá corrigir para a esquerda ou para a direita, e assim manter-se sobre a linha negra.

Como sensores será usado o array de sensores infra-vermelho Pololu (também chamado de sensor de reflectância) QTRx8RC, constituído de 8 sensores (serão usados somente 5) QRE1113GR.
Essse array, tem uma saída digital e pode ser facilmente utilizado (usando a biblioteca apropriada da Pololu) para determinar a posição da linha em relação aos sensores.





Este array de sensores pode ser quebrado para formar um conjunto com 6 sensores e outro com 2 sensores.
Para mais informações sobre o array de sensores infra-vermelho, visite:

http://www.pololu.com/catalog/product/961

Neste primeiro projeto, usaremos um controle rudmentar para o nosso robot, ou seja nos preocuparemos em manter o robot seguindo a linha apenas...
Para isto criaremos uma pista de teste para o robot rodar, e poderemos observar que os movimentos do robot serão um tanto quanto "robóticos", ou seja: não muito suaves, porém bruscos.


Pista:
Montada conforme diagrama abaixo em um fundo branco e linha preta.

Curvas de 6".








HARDWARE E COMPONENTES:

Material necessário:
1 X Arduino UNO, MEGA, Duemilanove ou Teensy 2.0++
1 x prototype shield (opcional)(altamente recomendável)
1 x PONTE-H dupla
2 x Gear Box com relação 30:1 de transmissão e motor DC associado
2 x Rodas Polulu ou equivalente
2 x Baterias 9V 400 mA/h
2 x clip de bateria 9V
1 x Ball caster (terceira roda)
fios e cabos para as conexões
parafusos, porcas, arruelas, espaçadores para a montagem
2 x peças de acrílico para o corte do chassis
ferramentas em geral



Projeto, esquema, construção - detalhes:


Corte Circular

Recorte das Rodas

Parte Inferior

Parte Superior





Vamos às pinagens:

1 - motores ligados aos pinos de saída da Ponte-H;
2 - bateria de 9V ligado ao VCC (+) e GND (-) da Ponte-H;
3 - pinos in1, in2, in3 e in4 da Ponte-H ligado ao arduino nos pinos: 10, 11, 5 e 6 respectivamente;
4 - pinos 1, 2, 3, 4 e 5 do sensor QTR, ligar aos pinos A0, A1, A2, A3 e A4 (observar que o sensor 1 deve ser o mais à esquerda);
5- LCD ligar como no diagrama: pinos R/W - 13, Enable - 12, dados - 9, 8, 7 e 4 (depende do tipo do seu display);
6 - Botão ligado ao pino 2 do Arduino;
7 - Buzzer ligado ao pino 3 do Arduino;
8 - Sensor de bateria ligado ao pino A5
consiste de dois resistores 10K/5K ligados ao GND/VCC e no centro ligado ao arduino. Como abaixo

|GND|---/\/\/\/------/\/\/\/-----|VCC|
            10K     |    5K
                      |


Esquema geral de conexões



Chassis:

O chassi foi criado especificamente para este projeto do robot Seguidor de linhas "LINUSBot"

Abaixo está o projeto completo do chassi, com dimensões e as vistas de cortes.

Também as fotos reais das fases de montagem.

A disposição dos módulos no chassis pode ser de acordo com o seu próprio design, porém devem ser respeitados alguns critérios, tal como: o peso dos componentes deverm ser apoiados na parte traseira e nunca na frente do chassis.... etc...

Primeiro protótipo:
Feito em madeirite fino de 3 mm.  Funcionou muito bem, poderia ser um projeto final.

Vejamos algumas fotos:


2 partes circulares de madeirite cortadas


Corte nas laterias para acomodação das rodas
Detalhe de fixação dos motores/rodas (parte de baixo), sensores e ball caster (taxinha)

Detalhe de fixação do array Pololu

Detalhe de fixação dos motores (parte de  cima)

Fixação dos espaçadores das camadas inferior e superior

Disposição inicial dos módulos na parte superior

Parte inferior


Parte superior, disposição de espaçadores dos módulos

Modulos fixados


Parte superior cabeada, segundo o diagrama esquemático

Pronto para o primeiro teste

Testado e aprovado, faltando alguns ajustes no software

Detalhe dos sensores cabeados; um grupo de 6 sensores e um grupo de 3 alimentação e controle dos LEDs infra

Detalhe da parte superior

Detalhe da parte inferior e sensores

Detalhe das baterias e ball caster (ainda a taxinha)

Uma grande solução para o Ball casters, é usar um roll-on de um batton de brilho.  Isso a Pololu cobra 2$, e você pode adquirir por R$1,00

Este é o original Pololu.
http://www.pololu.com/catalog/product/174

Ficou excelente esta solução... Recomendo!



Ball caster feito de Batton tipo Roll-on

Detalhe do caster-ball, um pingo de cola tudo e resolvido.

Rodas:
Pololu $7
http://www.pololu.com/catalog/product/1088




Diâmetro - 32 x 7 mm

Uma solução usada, foi comprar uma moto de plastico cuja roda é aproximadamente o mesmo diâmetro, e revestila com uma fita isolante de pressão plástica. R$5,00.
Vejam nas fotos que ficou muito boa a solução.



Motores:
SolarBotics Pololu $20 cada
http://www.pololu.com/catalog/product/641

Se você puder gastar, Recomendo!
Estes motores e gearbox são excelentes, pequenos, baixo cosumo, grande torque, relação 30:1, etc...

Solução encontrada R$30,00 kit com dois
motor, roda off-road, gearbox 30:1
http://seriallink.com.br/loja/product_info.php?cPath=55&products_id=188&language=pt&osCsid=o5b62h3u44ohs0bkh9v57r9up0



Bem eficaz!
A adaptação das rodas utilizadas, ficou perfeitamente ajustada.



Segundo protótipo:

Feito em acrílico.


Corte das duas placas de acrílico no formato circular



Recorte para as rodas

Posicionamento do sensor
 Notar que o sensor do meio, deve ficar alinhado ao centro da placa


Detalhe da ranhura para os pinos do sensor

Furação e inserção do sensor na ranhura

Fixação com parafusos

Posicionamento dos módulos


Detalhe de pinagem dos sesnores



Pista de teste


Detalhe de pinagem do LCD




Após o primeiro teste, bem sucedido de primeira




SOFTWARE E PROGRAMAÇÃO:

No link abaixo você encontra a versão completa e explicada do software utilizado.

http://www.4shared.com/file/8yKb70LD/LINUSBot_9_3pi_modelo.html

Obtenha todos os arquivos necessários no GitHub:
https://github.com/Arduinobymyself/LINUSBot.git

O projeto foi desenvolvido, nos moldes do Robot 3pi da Pololu.

Nove versões foram desenvolvidas com vários tipos de sensores LDRs, Infra-vermelho TCRT5000, TIL32/TIL78 e o array QTR-8RC da pololu.

Para este primeiro protótipo, o desempenho foi muito bom.

Vejam o vídeo para confirmação.







VÍDEOS E TESTES:

Dúvidas e sugestões para: arduinobymyself@gmail.com

Primeiro Protótipo:
screencast: http://www.screencast.com/t/mVXhRPWH
youtube: http://www.youtube.com/watch?v=YEzRKP34UGs&feature=youtu.be


Segundo protótipo:

screencast: http://www.screencast.com/t/6LN3XlDg3cJ
youtube: http://youtu.be/Z046AKObE34









Aguarde o próximo post, onde veremos um controle mais preciso do LINUSBot, utilizando controle PID (Proporcional Integral Derivativo).


E o próximo projeto de um Maze Solver (LINUSBot resolvendo labirintos...)

Até lá......... vai ser Show!